

4th IAGA School July 2 – 7, 2019 Station de biologie des Laurentides (near Montreal), Quebec, Canada

Program

Time/Date	02. July Tuesday	03. July Wednesday	04. July Thursday	05. July Friday	06. July Saturday	07. July Sunday
7:30	laceady	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast
8:30		Welcome				
9:00		Geomagnetic Field I	Core Dynamics	Electromag- netic Induction I	Solar Physics I	Planetary Magnetism I
						Break
10:30		Break	Break	Break	Break	
11:00		Geomagnetic Field I & II	Ionosphere Magneto- sphere I	Electromag- netic Induction II	Solar Physics II	Planetary Magnetism II
	Arrival					Lunch
12:30	at	Lunch	Lunch	Lunch	Lunch	
13:30	SBL	Geomagnetic Field II	lonosphere Magneto-		Project Work	Project Presentations
		Project Assignment	sphere II	Outing		
15:00		Break	Break	4	Break	Departure
15:30		Project Work	Project Work		Project Work	
18:00	Dinner	Dinner	Dinner	Dinner	Dinner	

The Geomagnetic Field

David Kerridge

British Geological Survey, Edinburgh, UK

- 1. Geomagnetic observations
 - A little bit of history of people and observations
 - Magnetic observatories and instruments. INTERMAGNET.
 - Magnetic surveys: from Captain Cook to the 3satellite Swarm mission
 - Magnetic activity indices and observatory data applications
- 2. Modelling the geomagnetic field
 - Spherical harmonic analysis
 - The International Geomagnetic Reference Field: the main field and its secular variations
 - Building 'comprehensive models' that incorporate other magnetic field sources
 - Using geomagnetic field data to investigate the core

Core dynamics and the geodynamo

Mathieu Dumberry

University of Alberta, Canada

- Force balance in the Earth's fluid core
- Quasi-geostrophic flows
- Magnetic field generation: competition between dynamo action and decay
- Observed magnetic field variations
- Decadal to millennial timescale flows in the core

Ionosphere and Magnetosphere

Andrew Yau

University of Calgary, Canada

- Formation of planetary ionosphere
- The Earth's ionosphere: composition and structure
- The Earth's (internal and external) magnetic field: the solar wind
- The Earth's magnetosphere: origin, composition and structure
- Dynamics of the ionosphere: plasma processes in a magnetic field
- Magnetosphere-Ionosphere Coupling: the aurora and space weather

Electromagnetic induction methods and applications

Stephan Thiel

Geological Suvey of South Australia

- Introduction to electrical and EM methods
- Electrical conductivity of Earth materials
- Source fields for electromagnetic induction
- Theoretical background of electromagnetic methods with focus on magnetotellurics
- Analysing MT data: dimensionality, strike, anisotropy
- Modelling of MT data: from 1D to 4D
- Case studies: Tectonics and mineral exploration
- Case studies: Geothermal exploration and hydraulic fracture monitoring

Solar magnetic fields and activity cycle

Alexandre Lemerle

Collège de Bois-de-Boulogne, Canada

- Observations of solar activity
- Solar magnetism
- The solar dynamo
- MHD induction
- Full set of MHD equations
- Numerical modeling
- Solar activity forecasting
- Eruptive events, radiative variability, coronae, etc.

Planetary Magnetic Fields

Manar Al Asad

University of British Columbia

- A tour of planetary magnetic fields: our solar system
- Flybys vs orbital data
- Data sets available: how/where to get them
- Separating internal and external fields
- Upward and downward continuation
- Core, crustal and induced fields
- Discussion of Science/Nature papers

Projects:

Geomagnetism

David Kerridge

British Geological Survey, Edinburgh

Guided computer-based exercises including:

- Signals in magnetic observatory data from seconds to decades
- Examples of spherical harmonic analysis in action including using the IGRF to trace field lines and find conjugate points
- Building a 'mini-IGRF' from a Swarm data set
- Estimating the core radius using geomagnetic field models

Magnetometers

(emphasis on fluxgate low frequency)

Martin Connors

Athabasca University, Canada

- Magnetic detection, B and dB/dt
- Signal transduction (A/D conversion)
- Control and data transmission systems (small computers)
- Assembly of test system
- Data storage and plotting
- Near-real-time results
- Remote data access and magnetometer networks
- Aspects of data inversion (advantages and pitfalls of indices; problems with inversions)

IAGA gratefully acknowledges financial support for the 4th IAGA School from the European Geosciences Union (EGU) and GEM Systems Advanced Magnetometers, Ontario, Canada.